Comments on 'Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations'.
نویسندگان
چکیده
Current clinical experience in radiation therapy is based upon dose computations that report the absorbed dose to water, even though the patient is not made of water but of many different types of tissue. While Monte Carlo dose calculation algorithms have the potential for higher dose accuracy, they usually transport particles in and compute the absorbed dose to the patient media such as soft tissue, lung or bone. Therefore, for dose calculation algorithm comparisons, or to report dose to water or tissue contained within a bone matrix for example, a method to convert dose to the medium to dose to water is required. This conversion has been developed here by applying Bragg-Gray cavity theory. The dose ratio for 6 and 18 MV photon beams was determined by computing the average stopping power ratio for the primary electron spectrum in the transport media. For soft tissue, the difference between dose to medium and dose to water is approximately 1.0%, while for cortical bone the dose difference exceeds 10%. The variation in the dose ratio as a function of depth and position in the field indicates that for photon beams a single correction factor can be used for each particular material throughout the field for a given photon beam energy. The only exception to this would be for the clinically non-relevant dose to air. Pre-computed energy spectra for 60Co to 24 MV are used to compute the dose ratios for these photon beams and to determine an effective energy for evaluation of the dose ratio.
منابع مشابه
Calculations of absorbed dose and energy dependent of small-scale dosimeters for photons beam therapy
In this study, the energy dependency for dosimeters of air ionization chambers, lithium fluoride, silicon and plastic scintillator has been studied using the MCNPX Monte Carlo simulation code and simulated for gamma energy in the range of radiotherapy energy. The simulation results show that the response of each of the dosimeters for gamma photon beams in the energy range of 0.2 to 20 MeV varie...
متن کاملA comparative Monte Carlo study on 6MV photon beam characteristics of Varian 21EX and Elekta SL-25 linacs
Background: Monte Carlo method (MC) has played an important role in design and optimization of medical linacs head and beam modeling. The purpose of this study was to compare photon beam features of two commercial linacs, Varian 21EX and Elekta SL-25 using MCNP4C MC code. Materials and Methods: The 6MV photon beams of Varian 21EX and Elekta Sl-25 linacs were simulated based on manufacturers pro...
متن کاملThe effect of electronic disequilibrium on the received dose by lung in small fields with photon beams: Measurements and Monte Carlo study
Background: Prediction of the absorbed dose in irradiated volume plays an important role in the outcome of radiotherapy. Application of small fields for radiotherapy of thorax makes the dose calculation process inaccurate due to the existence of electronic disequilibrium and intrinsic deficiencies in dose calculation algorithms. To study the lung absorbed dose in radiotherapy with smal...
متن کاملCalculation of Absorbed Glandular Dose using a FORTRAN Program Based on Monte Carlo X-ray Spectra in Mammography
Introduction: Average glandular dose calculation in mammography with Mo-Rh target-filter and dose calculation for different situations is accurate and fast. Material and Methods: In this research, first of all, x-ray spectra of a Mo target bombarded by a 28 keV electron beam with and without a Rh filter were calculated using the MCNP code. Then, we used the Sobol-Wu parameters to write a FORTRA...
متن کاملInvestigation of dose distribution 252Cf Isotron brachytherapy source based on TG-43U1 protocol by Monte Carlo method
Introduction:The commercial 252Cf sources are too large in size and clinical applications of neutronbrachytherapy (NBT) are limited to a small number of intracavitary treatments of cervical cancers. Recently, under the Cooperative Research and Development Agreement (CRADA) with Isotron Inc., the Oak Ridge National Laboratory (ORNL) encapsulated a new medical 252Cf sources, cal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 45 8 شماره
صفحات -
تاریخ انتشار 2000